The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Practices in the built environment have become more digitalized with the rapid development of modern design and construction technologies. However, the requirement of practitioners or scholars to gather complicated professional knowledge in the built environment has not been satisfied yet. In this paper, more than 80,000 paper abstracts in the built environment field were obtained to build a knowledge graph, a knowledge base storing entities and their connective relations in a graph-structured data model. To ensure the retrieval accuracy of the entities and relations in the knowledge graph, two well-annotated datasets have been created, containing 2,000 instances and 1,450 instances each in 29 relations for the named entity recognition task and relation extraction task respectively. These two tasks were solved by two BERT-based models trained on the proposed dataset. Both models attained an accuracy above 85% on these two tasks. More than 200,000 high-quality relations and entities were obtained using these models to extract all abstract data. Finally, this knowledge graph is presented as a self-developed visualization system to reveal relations between various entities in the domain. Both the source code and the annotated dataset can be found here: https://github.com/HKUST-KnowComp/BEKG.
translated by 谷歌翻译
数据驱动的设计和创新是重复使用和提供宝贵和有用信息的过程。但是,现有的设计创新语义网络基于仅限于技术和科学信息的数据源。此外,现有研究仅在统计或语义关系上建立语义网络的边缘,这不太可能充分利用两种类型的关系中的好处,并发现设计创新的隐性知识。因此,我们构建了基于Wikipedia的语义网络Wikilink。 Wikilink引入了概念之间的统计重量和语义权重的合并重量,并开发了四种算法来启发新想法。进行评估实验,结果表明,该网络的特征是术语,关系和学科的高度覆盖范围,这证明了网络的有效性和实用性。然后,演示和案例研究结果表明,Wikilink可以作为概念设计创新的思想生成工具。 Wikilink的源代码和后端数据提供开源,供更多用户探索和构建。
translated by 谷歌翻译
联合学习(FL)已成为机器学习中的实用且流行的范式。但是,目前,没有系统的解决方案涵盖不同的用例。从业者经常面临如何为其用例选择匹配的FL框架的挑战。在这项工作中,我们提出了Unifed,这是对现有开源FL框架进行标准化评估的第一个统一基准。在15个评估方案中,我们从功能,可用性和系统性能的角度出发了9个现有流行开源的FL框架的定性和定量评估结果。我们还根据基准结论提供有关框架选择的建议,并指出未来的改进方向。
translated by 谷歌翻译
基础模型由于在广泛的下游应用中的有效性而受到了很多关注。尽管在体系结构方面存在很大的融合,但大多数审慎的模型通常仍用于特定任务或模式。在这项工作中,我们建议将语言模型用作各种基础模型的通用接口。一系列预处理的编码者感知到了多种方式(例如视觉和语言),并与扮演通用任务层角色的语言模型对接。我们提出了一个半伴侣的语言建模目标,以共同确定界面和模块化编码器。我们从因果关系和非因果建模中涵盖了优势和能力,从而结合了两个世界的最佳状态。具体而言,所提出的方法不仅从因果语言建模中继承了内在学习和开放式生成的能力,而且由于双向编码器而有利于填补。更重要的是,我们的方法无缝地解锁了上述功能的组合,例如,通过填充编码器启用了文本学习或指导。各种仅语言和视觉语言基准的实验结果表明,我们的模型表现优于或与鉴定,零弹性概括和几乎没有的学习的专业模型竞争。
translated by 谷歌翻译
信息爆炸的时代促使累积巨大的时间序列数据,包括静止和非静止时间序列数据。最先进的算法在处理静止时间数据方面取得了体面的性能。然而,解决静止​​时间系列的传统算法不适用于外汇交易的非静止系列。本文调查了适用的模型,可以提高预测未来非静止时间序列序列趋势的准确性。特别是,我们专注于识别潜在模型,并调查识别模式从历史数据的影响。我们提出了基于RNN的\ Rebuttal {The} SEQ2Seq模型的组合,以及通过动态时间翘曲和Zigzag峰谷指示器提取的注重机制和富集的集合特征。定制损失函数和评估指标旨在更加关注预测序列的峰值和谷点。我们的研究结果表明,我们的模型可以在外汇数据集中预测高精度的4小时未来趋势,这在逼真的情况下至关重要,以协助外汇交易决策。我们进一步提供了对各种损失函数,评估指标,模型变体和组件对模型性能的影响的评估。
translated by 谷歌翻译
人工智能(AI)的基本目标是模仿人类的核心认知活动。尽管在AI研究中取得了巨大的成功,但大多数现有方法仅具有单认知能力。为了克服这一局限性并迈出了朝着人工通用智能(AGI)迈出的坚实一步,我们开发了一个通过庞大的多模式数据进行预训练的基础模型,可以快速适应各种下游认知任务。为了实现这一目标,我们建议通过从Internet上拖延的语义相关数据进行自我监督的学习来预先培训我们的基础模型,并表明可以在各种下游任务上获得有希望的结果。特别是,使用开发的模型解剖工具,我们证明了我们的基础模型现在拥有强大的想象力。我们认为,我们的工作从我们的“弱或狭窄AI”的常见实践到“强或广泛的AI”迈出了转变的迈向AGI。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译
The study of stability and sensitivity of statistical methods or algorithms with respect to their data is an important problem in machine learning and statistics. The performance of the algorithm under resampling of the data is a fundamental way to measure its stability and is closely related to generalization or privacy of the algorithm. In this paper, we study the resampling sensitivity for the principal component analysis (PCA). Given an $ n \times p $ random matrix $ \mathbf{X} $, let $ \mathbf{X}^{[k]} $ be the matrix obtained from $ \mathbf{X} $ by resampling $ k $ randomly chosen entries of $ \mathbf{X} $. Let $ \mathbf{v} $ and $ \mathbf{v}^{[k]} $ denote the principal components of $ \mathbf{X} $ and $ \mathbf{X}^{[k]} $. In the proportional growth regime $ p/n \to \xi \in (0,1] $, we establish the sharp threshold for the sensitivity/stability transition of PCA. When $ k \gg n^{5/3} $, the principal components $ \mathbf{v} $ and $ \mathbf{v}^{[k]} $ are asymptotically orthogonal. On the other hand, when $ k \ll n^{5/3} $, the principal components $ \mathbf{v} $ and $ \mathbf{v}^{[k]} $ are asymptotically colinear. In words, we show that PCA is sensitive to the input data in the sense that resampling even a negligible portion of the input may completely change the output.
translated by 谷歌翻译
Temporal reasoning is the task of predicting temporal relations of event pairs with corresponding contexts. While some temporal reasoning models perform reasonably well on in-domain benchmarks, we have little idea of the systems' generalizability due to existing datasets' limitations. In this work, we introduce a novel task named TODAY that bridges this gap with temporal differential analysis, which as the name suggests, evaluates if systems can correctly understand the effect of incremental changes. Specifically, TODAY makes slight context changes for given event pairs, and systems need to tell how this subtle contextual change will affect temporal relation distributions. To facilitate learning, TODAY also annotates human explanations. We show that existing models, including GPT-3, drop to random guessing on TODAY, suggesting that they heavily rely on spurious information rather than proper reasoning for temporal predictions. On the other hand, we show that TODAY's supervision style and explanation annotations can be used in joint learning and encourage models to use more appropriate signals during training and outperform across several benchmarks. TODAY can also be used to train models to solicit incidental supervision from noisy sources such as GPT-3 and moves farther towards generic temporal reasoning systems.
translated by 谷歌翻译